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TWO-DIMENSIONAL CONVOLUTIONS, CORRELATIONS, AND

FOURIER TRANSFORMS OF COMBINATIONS OF WIGNER DISTRIBUTION

FUNCTIONS AND COMPLEX AMBIGUITY FUNCTIONS

INTRODUCTION

Over the years, a number of properties of integrals of

products of complex ambiguity functions (CAFs) or products of

Wigner distribution functions (WDFs) have been derived, such as:

the volume constraint of magnitude-squared ambiguity functions

(1; page 308), the positivity of the convolution of any two WDFs

[2; (106)), and Moyal's theorem involving the volume under the

square of a WDF [3). Now, it appears that these are very special

cases of a general class of two-dimensional Fourier transforms of

combinations of CAFs and WDFs with delayed or time-reversed

arguments.

We begin by deriving a general one-dimensional transform

relation involving two arbitrary complex waveforms and their

Fourier transforms. An application of this relation to energy

density spectra yields three alternative expressions for the

output correlation of a filtered time function. This general

transform relation is also the basic tool for setting up the two-

dimensional transforms that are the subject of succeeding

sections. The extreme generality of the two-dimensional

relations allows for a large number of special cases; some of

these are pointed out, but undoubtedly there are additional ones

not listed here.
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When we begin our two-dimensional transform investigation, we

do not immediately specialize to WDFs or CAFs. Rather, we first

consider a set of four general functions, each of two variables,

all of which are related to each other by Fourier transforms. We

show that two-dimensional Fourier transforms of products of pairs

of these general functions are all equal to a common value,

although that value cannot be expressed in any simple closed

form. These relations are derived for convolution type

operations as well as for correlation operations.

When we make a specialization of these results to waveforms,

relatively simple closed form results, in terms of products of

WDFs and CAFs, are obtained for these two-dimensional transforms.

And when the arguments of these relations are futther specialized

in value (such as zero), some of the currently known relations

involving CAFs and WDFs result.

Extensions of these results to time contracted or expanded

arguments are made in the appendices. Again, specializations to

waveforms yield closed form results, in terms of products of WDFs

and/or CAFs.

2
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ONE-DIMENSIONAL TRANSFORM RELATIONS

Function g(t) is an arbitrary complex function of real

argument t, which will be thought of as time. Its FourieL

transform will be denoted by complex function G(f), where

G(f) - idt exp(-i2nft) g(t) .l)

Integrals without limits are along the real axis and over the

range of nonzero integrand. Argument f is a real cyclic

frequency, not a radian frequency. The inverse Fourier transform

relation to (1) is

g(t) - }df exp(+i2nft) G(f) .(2)

The Fourier transform pair in (1) and (2) will be denoted by

g(t) * G(f) . (3)

Similarly, h(t) and H(f) will be a Fourier transform pair.

TRANSFORM OF PRODUCT OF WAVEFORMS

The variables v,ct,A,p,y are all real in the following. A

generalization of Parseval's theorem is then possible, namely

dt' exp(-i2nvt') g(axt+Ot') h (pt+yt') - exp i2nvt•+u) 0

3
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where it is presumed that • # 0 and y 0 0. This result may be

derived by substituting for g according to (2), interchanging

integrals, and using (1) for Fourier transform pair h(t) * H(f).

A more symmetric form for relation (4) is available, if desired:

JdtF exp(-i2nvt') g(IS(t'+ t-y) h*(y(tl- tj4

f dv' exp(+i2nv't) G(y(v'+ -~-I- H(0(v I- T-J(5)

21y 23y

SPECIAL CASES

By specializing the parameter values in (4), several

interesting and useful results can be obtained. For example, if

we take y - 0, p - -a, then we obtain a combined one-dimensiona!

Fourier transform and correlation:

r *
Jdt' exp(-i2nvt') g(Ot'-+t) h (Ot'-at) -

- Jdv' exp(i2n-v't2aj) G(Ov'+ N) H* (3V'- -) (6)

On the other hand, if we take y - -0, p = in (4), there

follows a combined one-dimensional Fourier transform and

convolution:

r *
Jdt' exp(-i2nvt') g(lt+Ot') h (at-Ot') -

- {dv' exp(i2nv't2a0) G( v +1v1' H*(- -0v) (7)

4
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Further specialization to the specific numerical values

y - 1 - 1, -p - - ½, in (6) yields

Jdt' exp(-i2nvt') g(t'+½t) h (t'-½t) =

Jdv' exp(+i2nv't) G(v'+ýv) H*(v'-ýv) . (8)

Alternatively, the choice -y = = ½, p - - 1 in (7) yields

idt' exp(-i2nvt') g(t+½t') h (t-t')=

- Jdv' exp(+i2nv't) G(v+4v') H*(v-½4v') .(9)

APPLICATION TO ENERGY DENSITY SPECTRA

Case 1. Suppose that we choose

2 2
G(v) - IX(-v)l , H(v) - IY(v)I , (10)

which are the energy density spectra of wavefoLms x(t) and y(t),

respectively. Then g(t) = *x,(t) and h(t) - yy(t), where *xx(t)

is the auto-correlation function of complex waveform x(t):

(t) - du x(t + u) x (u) (11)

The use of (10) and (11i in (8) yields

5
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I1(t,V) * Jdv' exp(+i2nv't) IX(v'+hv)I 2 IY(2'-½v)I2

Jdt' exp(-i2nvt') wx(t'+½t) yy (t'-½t) • (12)
f xx yy

The last term in (12) is identical to (yy(t-t').

The special case of v - 0 in (12) reduces to

11 (t,O) - fdv' exp(+i2nv't) IX(v')I2 IY(v')I -

- fdt' *xxtlt+4t) (t'W-4t) ( 13)

The additional restriction to t - 0 becomes

Ii(0,0) - fdv' IX(vI')I 2 2Y(V') 2

= fdt' qixx tl') qIyyl(t') • (14)

Case 2. Here, instead, make the identifications

G(v) - X(v) Y(V) - H(V) . (15)

Then

g(t) - Cxy(t) u jdu x(u) y(t-u) - h(t) , (16)

which is the convolution of x(t) and y(t). Substitution of (15)

and (16) in (8) gives

6
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1 2 (t'v) m Jdv' exp(+i2nv't) X(v'+hv) Y(v'+hv) X (v'-½v) Y (v'-4v)

f dt' exp(-i2nvt') Cxy(t'+ht) C* (t-ht) .(17)
xy xy

Setting v to zero yields

1 2(t,O) - Jdv' exp(+i2nv't) IX(v'll2 IY(v')I 2

= Jdt' C xy(t'+½t) C x(t'-ht) .(8

Finally, also setting t equal to zero,

T 2 (00) - fdv' IX(v')I 2 IY(v')1 2  Jdt' IC (t')12 . (19)

Case 3. Now identify

G(v) - X(v) Y*(v) -H(v) .(20)

Then

g(t) = 4x(t) m Jdu x(u + t) y*(u) -h(t) ,(21)

*which is the cross-correlation of x(t) and y(t). The use of (20)

and (21) in (8) leads to

1I (t'v) Jdv' exp(+i2nv't) X(v'+½v) Y (v'+hv) X (v'-½v) Y(v'-½v)

f dt' exp(-i2nvt'), 40 (t'+½t) ** (t-½t) .(22)
xy xy

The result of setting v to zero is

7
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I3(t,0) - fdvC exp(+i2nv't) IX(v')l2 IY(v')I -

r "
w Jdt' ,xy(t'+kt) * (t'-4t) . (23)

xy

When t is also set equal to zero, (23) reduces to

1 3(10,0) - fdv, IX(v•,)2 IY(V')12 - fdt I,~xy (t'f2. (24)

It should be observed that the upper lines of (13), (18), and

(23) are identical to each other; that is,

S11 (t ,0 ) - I 2 (t,0 ) - I 3 (t,0 ) . (25 )

Therefore, the lower lines of (13), (18), and (23) furnish three

equal alternative expressions involving autocorrelations,

convolutions, or cross-correlations, respectively.

There are many other possibilities for identifications of G

and H in (8), besides (10), (15), and (20). For example, we

could take

2
G(v) - IX(v)l Y(v) , H(v) - Y(v) . (26)

However, it may be shown that this choice leads identically to

result (13) when v is set to zero; so not all selections yield

new relations. Additional convolution type relations may be

obtained if (9) is used instead of (8).

8
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GENERAL TWO-DIMENSIONAL TRANSFORM RELATIONS

In this section, we will consider a set of four general

functions, each of two variables, which are related to each other

by Fourier transforms. These four functions are indicated in

figure 1, where a two-headed arrow denotes a Fourier transform

relationship. These functions are, for the moment, arbitrary

complex functions of two variables; they are not necessarily

Wigner distribution functions or complex ambiguity functions.

R(t,T) •--•X•T

I I
W(t,f) .--. 9(vf)

Figure 1. General Two-Dimensional Functions

The paired transform variables, here and for the rest of the

report, are t * v and T * f. The detailed Fourier transform

interrelationships between the four functions in figure 1 are

X(vT) - fdt exp(-i2nvt) R(t,T) , (27)

R(t,T) - Jdv exp(+i2nvt) x(v,T) , (28)

W(tf) = Jdx exp(-i2nfT) R(t,T) , (29)

R(t,T) = fdf exp(+i2nfT) W(t,f) , (30)

9
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*(v,f) - Jdt exp(-i2nvt) W(t,f) , (31)

W(t'f) - Jdv exp(+i2nvt) #(v,f) , (32)

*(v,f) - fdT exp(-i2afT) X(v,¶) , (33)

X(V,r) - Jdf exp(+i2nf') 4(v,f) . (34)

A double Fourier transform relationship exists between R and 9,

as well as between W and X.

TWO-DIMENSIONAL CONVOLUTIONS

We repeat (9) here, but with a change of variables t 4 T and

V - f:

Jd¶' exp(-12nfT') g(T+4-') h* (T-4T) -

I. "
- Jdf' exp(+i2nf'T) G(f+4f') H (f-½f') . (35)

Let X1 and X2 be two different functions of the type indicated in

figure 1, and consider (35) with the assignments

g(T) - X(Va a,) , h(r) - X2 (vbr) . (36)

The corresponding Fourier transform pairs for (36) are

G(f) - #1(va f) , H(f) - *2 (vblf) (37)

upon use of (33). There follows, from (35),

10
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dxr exp(-i2nfT') Xi(V a,+4-') X2(Vb,¶-h') -

- df' exp(+i2nf'¶) *I(Vaif+½f') *2(2b,f-½f') . (38)

See appendix A for the most general result of this form.

If we now let va w v+v,' and Vb = v-4,' in (38), then an

additional Fourier transform on v' yields the middle two lines

in (39) below. More generally, in a similar fashion to that used

above, we find that the combined two-dimensional convolution and

Fourier transform can be expressed in four equivalent forms:

I(V,f,t,T) E (39)

- Jfdt'dT' exp(-i2nvt'-i2nfT') Rl(t+Wt',¶+½t') R2 (t-½t',¶-½') -

- rfdv'd' exp(+i2nv't-i2nfT') X1 (v+ýv',T+1-r') X2 (v-½_v',¶-½') -

- fdv'df' exp(+i2nv't+i2nf'T) #l(V+hV',f+½f') 02(v-½W',f-hf') -

- dt'df' exp(-i2nvt'4i2nf'T) W1 (t+ht',f+hf') W2 (t-½t',f-4f')

Alternative forms of (39) are available; for example, the

last line can be written in the more typical convolution form

dt'df' exp(-i2nvt'+i2nf'T) W (t',f') W (t-t',f-f') -

- ' exp(-invt+inft) I(½v,½f,ht,½T) (40)

i1
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TWO-DIMENSIONAL CORRELATIONS

Here, we use (8) with identifications

g(t) - RI(tTa) , h(t) - R2 (tblb)

G(v) - Xi(vra) , H(V) - X2 (vTb) . (41)

Then there follows immediately

fdt' exp(-12nvt') R-t+tx)R(lh~

J- dv' exp(+i2nv't) Xl(V'+4vpa) X(v'-½vrbl . (42)

Now let Ta - T'+kT and Tb - ¶'-kT, and Fourier transform on

T'. The result is the first two relations, given below, of four

equivc1ent forms of the combined two-dimensional correlation and

Fourier trpsf~orm

J(v,f,t,¶) * (43)

- jjdt'dT' exp(-i2nvt'-i2nfx') Rl(t'+4t,¶'+4T) R*(t'-½t,¶'-4T) -1 2
- ffdv'dt' exp(+i2nv't-i2nfT') xl(V'+hV,T'I+4) X2(V'-4vr'-'.4) -

- J-dv'df' exp(+i2nvl't+i2nf',T) *l(v÷1+,f'+4f) *(V'-4V,f'-4f) -

- fjdt'df' exp(-i2nvt'+i2nf'T) Wl(t'+÷t,f'+4f) W(t'-4t,f'-4f)

Alternative forms to (43) are possible; for exbmple, the last

line can be expressed in the more typical correlation form

12
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fdt'dfv exp(-12nvtf+i.2nfrT) w (t,f') W *(t'-t,f'-f)-

" exp(-invt+infT) J(v,f,t,x) . (44)

MtIXED RELATIONS

The results in (39) and (43) all involve two W(t,f)

functions, or two X(v,T) functions, etc. However, it is possible

to obtain relations which involve, for example, one W(t,f)

function and one x(v,T) function. As an illustrative example,

consider (9) with g(t) - W1(tifa) and h(t) - X2(fb ,t). Then,

from figure 1, G(v) - *1(Vfa) and H(v) - C2 (fb,v), giving

dt' exp(-12nvt') W1 (t+kt',fa) X;(fb,t-%t) -

Sfdv' exp(+i2nv't) # 1 1(v+4',fa) 02(fb, be ' o) (45)

If we now let fa = f+4f' and fb - f-½f', and perform a

Fourier transform on fl, there follows immediately

dtrdf' exp(-i2nvt'+i2nf'T) W (t+½t',f+½f') X1(f-½f',t-t') -

(46)

- fdv'df' exp(+i2nv't+i2nf'-) 91 (•+½v',f+½f') *(f-4f'V-½v')1

Thus, a combined two-dimensional convolution and Fourier

transform of a W(t,f) function and a X(v,T) function can be

expressed in terms of two *(v,f) functions. (Strictly, some of

the arguments are reversed, as seen in (46).)

13
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If, instead, we use (8) with g(t) and h(t) assigned as above,

then we obtain

dt' exp(-12xvt') Wi(t'+ht,fa) x*(fb t'-t) -

- Jdv' exp(+12v't) # 1 (v'+4v,fa) #*(fb,v'-½v) . (47)

Letting f. M fl+hf, fb - f'-hf, and performing an additional

Fourier transform on f', there follows

Jidt'df' exp(-i2nvt,+i2nf,r) W 1 (t,+ht,f,+hf) X2(f'-hf,t'-ht) -

(48)

-Jfdvdf, exp(+i2nvt+i2nf,,) *1 (v'+,v,f,+÷f) * (f,-hf,V,-hV)

Here, a combined two-dimensional correlation and Fourier

transform of a W(t,f) function and a x(v,x) function can be

expressed in terms of two #(v,f) functions. (Again, some

arguments are reversed or replaced. However, the first argument

in a X function is always a frequency variable, while the second

argument is always a time variable; similar restrictions hold for

the remaining functions R, W, 0 in figure 1.)

14
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SPECIALIZATION TO WAVEFORMS

In the previous section, the functions R, W, X, 0 were

arbitrary, except that they were related by Fourier transforms

according to figure 1. Here, we will specialize their forms,

thereby enabling more explicit relations for their two-

dimensional convolutions and correlations.

For arbitrary complex waveforms a(t), b(t), c(t), d(t), let

R (t,T) = a(t+½T) b*(t-4T) m R ab(t,T) , (49)

R2 (t,¶) = c(t+½T) d*(t-½T) s Rcd(t,T) . (50)

These are known as (cross) temporal correlation functions (TCFs).

Thus, R ab(t,-r) is the "instantaneous" cross-correlation between

waveforms a and b, corresponding to center time t and separation

(or delay) time x. Then, from (31) and (29), or [4; (35)], there

follows

f1 - 0ab(Vf) - ffdt dT exp(-i2nvt-i2nf¶) Rab(tC) -

= A(f+½v) B (f-½v) , (51)

* 2 (v,f) - 0cd (v,f) - C(f+½v) D* (f-½v) . (52)

These functions are known as (cross) spectral correlation

functions (SCFs). (In [41, the notation A(v,f) was used for this

function; however, A(f) will be used here for the Fouriec

transform of waveform a(t).) The SCF corresponds to center

frequency f and separation (or shift) frequency v.

15
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The Fourier transform relationships in figure 1 and equations

(27) - (34) still hold true, but now are specialized to the

waveform cases above. Specifically, figure 2 illustrates the

four two-dimensional functions for waveforms a(t) and b(t), where

now W1 - Wab is a cross Wigner distribution function (WDF) and

X1- Xab is a cross complex ambiguity function (CAF).

TCF Rab(t,T) X-- Xb(vI) CAF

I I
SWDF Wablt,f) f abl(,f) SCF

Figure 2. Two-Dimensional Functions for Waveforms

The detailed Fourier transform interrelationships are now

Xab(vT) Idt exp(-i2nvt) Rab (tT) , (53)

R ab (tT) {dv exp(+i2nvt) x ah(V,¶) ,(54)

W ab(tlf) PdT exp(-i2nfT) R ab (tIT) ,(55)

Rab (t,T) - Jdf exp(+i2nfr) Wab(t,f) , (56)

0ab(v,f) - fdt exp(-i2nvt) Wab(tf) , (57)

Wab(tf) - fdv exp(+i2nvt) *ab(vf) , (58)

16
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0ab(v,f) - jdT exp(-i2nf-r) Xab(VT) (59)

Xab(v,T) - fdf exp(+i2nfT) 0ab(Vf) (60)

The function W aa(t,f), for example, is an auto WDF, since it

involves only one, waveform, a(t). We oill frequently drop the

terminology auto and cross, when possible without confusion, and

let the notation indicate the particular case.

It will be found advantageous for future purposes to define a

scaled and contracted WDF according to

Wab(tf) - "Wab(½t,½f) (61)

GENERAL CROSS PROPERTIES

Due to the restriction of form taken on by the TCF in (49)

and the SCF in (51), the four functions irt figure 2 obey some

symmetry rules; they aie

Rab(t,-T) - Rba(t,T)

*ab(-Vf) - 4ba(Vf)

Xab(-V,-T) - Xba(vT)

Wab(tf) - Wba (tf) (62)

17
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AUTO PROPERTIES

When waveform b(t) - a(t), some specializations follow:

R aa(t,-T) R aa(t,-r)

0aa(-V,f) = 4aa(v,f)

Xaa(-V,-T) Xaa(vT)

Waa(t,f) - real for all t, f, a(t), (63)

with the only significant specialization being the realness of

WDF W aa(t,f). Waveform a(t) can still be complex.

SOME SPECIAL CASES

The ordinary cross-correlation of two waveforms a(t) and b(t)

is a special case of a CAF:

'ab (T) a fdt a(t) b*(t-x) - x (O,)64)

The ordinary cross-spectrum is then a special case of an SCF:

Tab(f) a Jd¶ exp(-i2nfT) 4' b (r) - abl,f) - Al(f) B (f) (65)

The autospectrum is then simply

T aa(f) - 4aa(O,f) - ,A(f)j 2 , (66)

which is always nonnegative.

The ordinary convolution of two wavefoims a(t) and b(t) is a

special case of a WDF:

I, "
JdT a(x) b (t-x) - 4Wab(4t, 0 ) - Wab(t,0) (67)

18
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REAL WAVEFORM a(t)

In addition, if waveform a(t) is real, the following (auto)

properties nold true:

R a(t,-T) - Raa (tr) and Raa is real

9 aa (v,-f) - aa(x,f) ,

Xaa(v,-C) - Xaa(v,.r) ,

Waa(t,-f) - Waa(tf) . (68)

The situation for a real waveform a(t) is summarized in figure 3

below.

tR ~*

R xX

TCF CAF

f f

W .

t v

W * 9

WDF SCF

Figure 3. Symmetry Properties for Real Waveform a(t)
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MIRROR-IMAGE RELATIONS

For general complex waveforms a(t) and b(t), define

mirror-image functions

Sa(t) - a(-t) b(t) - b(-t) .(69)

Then it follows directly that the voltage density spectrum of

mirror-image a(t) is

A(f) a fdt exp(-i2nft) a(t) - A(-f) , (70)

which is the mirror-image of A(f). Also, there follows

Rab (-t,-T) - R ab(t,•)

1tab(-v,-f) - #ab(v,f)

Xab(-v,-T) - Xab(v,T),

Wab (-t,-f) - W ab(tf) . (71)

Thus, the mirror-image property for A(f) carries over into all

the two-dimensional domains, such as the WDF and CAF, as well.

There is no significant simplification for b(t) - a(t), except

for the realness of Waa(t,f), as before.

Use of mirror-image definition (69) allows for an interesting

connection between WDFs and CAFs. First, substituting (49) into

(53) and (55), we have cross CAF
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Xab(V,T) - idt exp(-i2nvt) a(t+hT) b*(t-½T) -

- Jdf exp(+i2nfT) A(f+÷v) B*(f-hv) N XAB(VT) (72)

and cross WDF

Wab(t,f) - dT exp(-i2nfT) a(t+½T) b (t-½T) =

fdv exp(+i2nvt) A(f+hv) B (f-½v) a WAB(t,f) . (73)

Reference to (69) now immediately reveals that

Wab (t,f) - 2 Xab (2f,2t) (74)

or

Xab(V,T) - W(½¶,OV) - Wab(T,V) (75)

Here, we also used (61). That is, the WDF of two waveforms

a and b is proportional to the CAF of waveforms a and b, the

mirror-image of b.

Finally, since

(f) b*(-t) - b*(t) , (76)

then, using (72),

X ,(V,T) - Jdf exp(i2nfT) A(f+hv) B(f-½v) -
AB

- x .(V,T) - ½W a(hT,½v) - W .(T,v) (77)ab ab* ab

21/22
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TWO-DIMENSIONAL TRANSFORM RELATIONS FOR WAVEFORMS

In an earlier section, general two-dimensional transform

relations were derived between sets of four functions related by

Fourier transforms; see figure 1 and (39) and (43). Here, we

will utilize the particular forms considered in the previous

section for waveforms (see figure 2) and will derive closed formb

for I and J in (39) and (43), respectively.

TWO-DIMENSIONAL CONVOLUTIONS

If we substitute (49) and (50) in the top relation in (39),

there follows

I(v,f,t,t) - JJdt'dT' exp(-i2nvt'-i2nfT') a(t+½t'+½T+kT') X

b* *x b(t+4t'-4T-4T') x C*(t-4t'+4T-kT') d(t-4t'-4T+kT') .(78)

Now let

u - ½t'+kT', v - ½t'-¼T'; u+v - t', 2(u-v) - x'. (79)

Since the Jacobian of this transformation is 4, (78) becomes

I(v,f,t,T) - 4jfJdu dv exp(-i2nv(u+v)-i2nf2,lu-v)) x

x a(t+½T+u) b (t-4T+v) c (t+½T-u) d(t-4T-v) -

r "
- du' exp(-i2nu'(f+4v)) a(t+4T+4u') c (t+4T-4u') x

x fdv, exp(+i2nv'(f-4v)) b* (t-4x+kv') d(t-½T-4v') -
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- Wac (t+¶,tf+hv) Wbd(t-4.,f-4V) . (80)

That is, all the following quantities are equal:

I(v,f,t,r) -

- jjdt'dT' exp(-i2nvt'-i2nfT') Rab(t+½t',•AT½') R~d(t-½t',¶-½TD)-

- fdv•'dT' exp(+i2nv't-i2nfT') Xal(V+V"',+4Tx) Xcd(v-½Ve¶*-T)-

- fdvl'dil exp(+i2nv't+i2nf'r) *ablv+hv',4A4f') 'cd(V-4V',f-4f')-

- fdtldf exp(-i2nvt'+i2nf'x) Wab(t+kt',f+4f') W *(t-ht',f-4f')-
ab cd

Wac (t+hTf+hv) Wkd(t-¶,£f-½V) . (81)

All four double-integrals in (81) can be expressed as a product

of the same two one-dimensional integrals, which are cross WDFs.

This reduction is only possible when the two-dimensicnal

functions, like W3 b and Xab, are WDFs and CAFs, respectively.

The transformations in (81) are combined two-dimensional Fourier

transforms and convolutions of TCFs, CLFs, SCFs, or WDFs.

By use of (74), an alternative expression for the end result

in (81) is

i(v,f,t,x) - 4 Xac(2f+,2t+T) Xbd( 2 f-v, 2 t-T) , (82)

in terms of mirror-image functions; see (69). Also, a more

typical convolution form for (31), for example, is (using (61))
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du dv exp(-i2nvu+i2nvr) Wab(UIv) Wcd(t-Ulfv) -

- exp(-invt+infT) Wc(t+4Tf+4v) Wbd(t-4Tf-4v) . (83)

TWO-DIMENSIONAL CORRELATIONS

In an identical fashion to that used above, result (43)

becomes

J(v,f,t,T) -

- Jdt'dr' exp(-i2nvt'-i2nf¶') Rab(t'+4t,T'+4T) Rcdlt-t,¶½-)-

- ffdv'dT' exp(+i2nv't-i2nfT') Xab(V'+4½,V'+hT) Xcd!•'-4,'T-4)=

- jjdv'dr exp(+i2nv't+i2nf'T) +ablvfl+hf) #cd(V'-4,f'-4f)=

- ffdt'df' exp(-12nvt'+i2,f)Wab(t'+4t,f'+hf) Wd(t'-4t,f'-4f)-

- Xac (f+hv,t+4T) Xbd(f-hvt-½T) . (84)

All these double integrals in (84) are equal to a product of two

cross CAFs. Again, this only holds for the special forms of the

two-dimensional functions, like Wab and Xab, which are WDFs and

CAFs, respectively. The transformations in (84) are combined

two-dimensional Fourier transforms and correlations of TCFs,

CAFs, SCFs, or WDFs.

By use of (75), an alternative expression for the end result

in (84) is
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J3(,ftT) - Wac(t+hif+hJ) Wbd(t-Tf-V) , (85)

in terms of mirror-image functions. Also, a more typical

correlation form for (84) is, for example,

- du dv exp(-i2nvu+i2nvt) Wab(UIv) Wcd(u-tv-f) -

- exp(-invt+inf) Xac (f+Nv,t+½¶) Xbd(f-4Vt-4¶) . (86)

A MIXED RELATION

As an example in this category, if we take (46) with

Wl(tf) - Wab(tf) I X2 (v,T) - Xcd( 2 v, 2 T) , (87)

then

#1 (V,f) - *ab (v,f) - A(f+½v) B*(f-½V)

#21V,f)- 4 4cd(2v,kf) - ½ C(lf+v) D*l(f-v) . (88)

Substitution of these results in (46) yields

dt'df' exp(-12nvt'+i2nf1't) Wab(t+ht',f+hf') Xcd(2 f-f',2t-t') -

- Wac (t+½t,f+hV) X4d(2f-v,2t-¶) . (89)

This mixed relation is a two-dimensional Fourier transform and

convolution, involving a WDF and a CAF, expressible in closed

form as a product of another WDr and CAF.
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SPECIAL CASES

The two-dimensional transfort rrtults in (81) and (84) in the

previous section involve four argum,.t%.., namely v,f,tt, and four

functions, a(t), b(t), c(t), d(t). Thi.i :i , me generality

allows for numerous special cases upon s cvf the

arguments and/or the functions. We consider cci.- ,of these

possibilities, but are aware that this list coulc be considerably

augmented.

Case 1. As an example of the generality of these reaultti,

consider in (84) the particular selection

v - f - t - T - 0, c(t) - a(t), d(t) - b(t). (90)

There follows immediately the "volume constraint"

Jfdv'dr,' IXab(V,') 12 . fJdt'df' IWab(t'f')I 2

M Xaa(0,0) Xbb(0,0) - fdt Ia(t)I 2 Jdt Ib(t) 12  (91)

Case 2. In (84), take v - T - 0, b(t) - a(t), d(t) - c(t).

Then there follows, upon use of (85),

dv'dT' exp(+i2nvl't-i2nfT') Xaa(V'T¶) X' *(\1'')
•; ,• ) cc(V

- Jfdt'df' Waa(t'+4t,f'+4f) Wcc(t'-4t,f'-4f) -

I IXac(ft)12. IWac(t,f)12 2(92)
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which is nonnegative real for all f, t, a(t), c(t). Thus, the

two-dimensional correlation of two auto WDFs is nonnegative.

An alternative form of (92) is

Jjdu dv Waa(uv) WCC(u-t,v-f)- IXac(ft)i2 (93)

Further specialization to t - f - 0 yields

fidu dv Waa(uv) Wcc(u,V) - I Xac(0,0) 12 Ifdt a(t) c*(t) 2, (94)

which yields Moyal's result [3] for c(tj - a(t), namely

dt df Wa (t,f) - dt ja(t)l 2]2 (95)

Case 3. In (81), take v - T - 0, b(t) - a(t), d(t) - c(t).

We then get the "smoothing result"

rat'ddfIWa&(t+4t',f+÷4f') W cc(t-t' ,f-4f' I-

- Wac(tif) - jdT' exp(-i2nfT') a(t+4t') c (t-4¶,)I2 > 0 (96)

for all t, f, a(t), c(t). An alternative form is

Jfdu dv Waa(u,v) Wcc (t-u,f-v)- 4½Wac(4t,½f) 12- 2 ac(t~f)I2 -

- fd' exp(-i2nfT') a(T') c (t-'I) 1297

That is, the two-dimensional convolution of two auto WDFs is

never negative (just as for the correlation in (92)).
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Case 4. Using (62), the same basic end result is obtained

from (81) for the following double integral involving CAFs:

Sfdv'd¶' exp(+i2nv't-i2nft') Xaa(WA'1½') Xcc(' ')=

- Iac (t,f) 12 .(98)

This right-hand side is nonnegative real for all t, f, a(t),

c(t). An alternative form is, upon use of (61),

fdv d-r exp(+12nvt-i2nfT) Xaa(Vr) X ~(V. r "aO ~ j (99)

Case 5. Consider (81) with c(t) - a(t), d(t) - b(t). Then

the right-hand side of (81) is always real. For example, we have

dv'dT' exp(+i2nv't-i2nf¶') xb(V+4V' T+4T') Xab (V-V',T-4T')'

- fdt'df' exp(-12nvt'+i2nf'T) Wab(t+4t',f÷4f') Wab(t-4tf-4f')-

- Waa (t+½Tf+4V) Wbb(t-4T,f-4V) . (100)

This is real for all t, t, f, v, a(t), b(t), although it could go

negative.

Case 6. From (81), with v = T - 0, there follows

Jdtldf Wb(t+4t',f+4f') Wc*(t-Wt',f-Wf') -

SWac (t If) Wbd(tf) , (101)
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or, with the help of (61) and (75), alternative form

du dv Wab (uv) Wcd(t-u,f-v)

- Wac (t,f) Wbd(tf) - Xac(f,t) Xbd(ft) (102)

Furthermore, if we set c(t) - a(t), d(t) - b(t), we obtain

rI *
du dv Wb(UIv) Wab(t-u,f-v) -

- Wa(tf) Wbb(t,f) - Xa(f,t) bb(f,t) . (103)

!aa bbaaft Xbft

Thus, the two-dimensional convolution of a complex cross WDF with

itself is always real, but could go negative.

Case 7. From (83) and (84), with v - T - 0, there follows

dt'df' Wb(t'+ht,f'+hf) Wcdl*'-ýttf'-t)

- fdu dv Wab(ulv) Wcd(u-t,v-f) -

-Jdv'dT' exp(+i2nvl't-i2nfT') Xab(v'') Xcd(VIT')

- Xac(f,t) Xbd(flt) - W (t,f) Wbd(tf) . (104)

ac bd -ac b

The two-dimensional correlation of two cross WDFs is a product of

two cross CAFs.
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Case 8. If we now set c(t) - a(t) and d(t) - b(t) in (104),

we obtain

du dv Wa(u,v) W *(U-t,v-f) -

W ab ab

- Jfdv'd¶' exp(+i2nv't-i2,f¶') IXab(vf ) 1 2

- Xaa(f,t) xbb(f,t) - Waa (tf) Wbb(tf) (105)

The two-dimensional correlation of a cross WDF with itself is a

product of two auto CAFs.

Case 9. From (84), with t - f - 0, c(t) - a(t), d(t) - b(t),

and with the help of (63), we find

Jfdt'df' exp(-i2nvt'+i2nf'T) IWab(t f')I 2

M Xaa(½",4T) Xbb (½',A) . (106)

This is a generalization of (91).
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APPLICATION TO HERMITE FUNCTIONS

This material is heavily based on [5; appendix A, (A-36) and

the sequel]. Let n (t) be the n-th orthonormal Hermite function

with linear frequency-modulation, as given in [5; (A-36)]. Also

let waveforms

a(t) - Ck(Pt), b(t) - Cl(yt), c(t) - Cm(jut), d(t) - Cn(yt). (107)

The particular cross WDFs

Wab(tlf) - jdt exp(-i2nfT) Ckl(Pt+hPT) 1(Yt-yT) ,

WI "
Wcd(tlf) - dT exp(-i2nfT) Cm(/t+hpT) Cnl(t-hyT) , (108)

cannot be expressed in closed form. However, the cross WDFs

r *
Wac (t,f) - JdT exp(-i2nfT) Ck(Pt+hPT) Cm(At-hpM) -

1 Wkm (t,f/0) (109)

and

1Wbd(t,f) - Wln(yt,f/y) (110)

can be simply expressed, in the notation of [5; (A-40) and

(A-41)). Thus, the very complicated two-dimensional convolution

and Fourier transform in (81), of Wab and Wcd, can be written in

a closed form involving the product of two generalized Laguerre

functions. Numerous specializations are possible.
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SUMMARY

Some very general two-dimensional Fourier transforms of

convolution and correlation form have been derived for various

combinations of WDFs and CAFs. In particular, closed forms for

the convolution form are given in (81), while results for the

correlation form are given in (84). Numerous special cases may

be obtained from these results, of which a brief list has been

presented in (90) - (106).

Some extensions to more general arguments have been derived

in appendices A and B. In particular, appendi". A treats the case

where a product of CAFs is of interest, while the case of a

product of WDFs is considered in appendix B. The possibility of

a combined convolution and correlation has also been considered

in appendix A.

For signals reflected off moving targets, it is necessary to

define a generalized WDF, allowing for contracted arguments.

This possibility has been considered in appendix C, where a

two-dimensional Fourier transform and convolution has been

evaluated in terms of the generalized WDF.

The results of this report should enable rapid evaluation of

integrals of products of WDFs and/or CAFs with a wide variety of

arguments and including exponential terms with linear arguments.

They also significantly extend a number of special cases already

known in the literature.
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APPENDIX A - PRODUCTS OF CAFs

In this appendix, we will further generalize the results in

(81) and (84), for products of two CAFs, to allow for more

general arguments. Hcwever, we begin by considering general

two-dimensional functions as in figure 1. In particular, let

g(r) - X1 (Va ,t) , h(¶) - X2 (Vb,r) , (A-i)

in (4). Then

G(f) - 1 (v3a,f) , H(f) - @2(vb,f) , (A-2)

giving

dT' exp(-i2nfT') XI(VaOT'+MT) X*(Vb,yr'+-') = exp(i2nf¶•0 ') X

x jdf' exp(i2nf'¶(uxy-,u)) f)(va,y f'+ 2j-)) *2(Vb'8(f'- ±1TI3) )

- _• expji2nfrc'Y+- -) df' exp(i2nf'T) xl • 20y )

x 1('a' ay-cu 20 2b' cy-Su 2 " (A-3 )

Now, let v a-Ov-av, v b=yv'+P•v where the boldface constants

are unrelated to their counterparts; that is, 0 need not equal 0,

with the same true of E,P,Y. Then Fourier transform (A-3) on v'

to obtain
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fdv'd¶' exp(+12nv It-i~nfT' ) x (3v'+GLV,OrrI+ T) X*( TV I+PV~v' +Pr)-

M exp 12nf-ray+O)Ifdv'df' exp(+i2nvlt+i2nfT) x

x j3(V'+UV, yf + f-)* (Yv'+Pv, Of'- f A-4
Oty-OP is 2 mxy- 13U 2-y) (A

in general, we cannot proceed any further on this double integral

of a product of general two-dimensional functions X1andX2

Now let R1and R2be TCFs; that is,

R 1(tT)- a(t+4½¶) b*(t-½'r) - R ab(t~t)

R 2(t,r) =c(t+½'r) d*(t-4½¶) - R cd(t,T) .(A-5)

Then # nd #2become SCFs:

S1 (V,f) - #*a (v,f) - A(fi-½v) B*(f-4v)

S2 (V,f) - 4 cd (v,f) - C(f+½v) D*(f-4v) .(A-6)

AS a fi::st case, let y-0 and y-13. Then (A-4) becomes

fdv'd-r~xp~i2nvvt-i2nfTI) X b(pv'+mV,frrI+ot) X* (O 'V 3C1+T

- I~1~)Iexp i2nf'rE±B) Jdv'df' exp(+12nvlvt+i2nf'T) x

x A(J f½L +h~v'+4av) B*(-f +4f -½Ov' -4uv) x

c*x -C 4 + 1v I+ 4u v) D(~ -4f -40v' -4iu) M
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1001-1 exp +i2nf¶P-±A -12nlvttO x

X Xa G % ( - ) +4 t. -• Xb ( -hv(c-p), -!(• o . kA-7)

Thus, this very general two-dimensional correlation and Fourier

transform of cross CAFs can be expressed as a product of two

different cross CAFs. For 0-0-1, o-a-½, P-,--½, this result

reduces to (84).

As a second case, let y--O and y--1. Then (A-4) becomes

JJdv'd'c'exp(i2nv't-i2nfT') Xab(av+Ov',c¶+O-r') Xcd(

1 exp i2nft.) a 'Jdv'df' exp(+i2av't+i2nf'¶) x

x A( 4- +4~ +½BV'+½ctv) 5(4 +4~ -4ov'-½xv)X

x C*(--- +4 -½0v'4-uv) D(-f' +hi +½0V'-½u4 -

113131-1 exp(+i2nf¶T CePi2nvt2A=) X

X Wa +½tlO+), +½V(a+P) Wbd(• -½Tlx+o), -½v(o€+u), (A-8)

where we used (61). Thus, this very general two-dimensional

convolution and Fourier transform of cross CAFS can be expressed

as a product of two different cross WDFs. For 0-0-½, a-a-l,

p-u-i, this result reduces to (81).
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As a third case, let y-0, y--3. There follows a two-

dimensional relation involving both a convolution and a

correlation:

II *
ffdvd,'exp(i2nv't-i2nfT') Xab( iV+S*V''T+MT) xcd-Pv'+u,0¶'+u)

1 I01311 exp(+12nf¶o'+ -12nvtS--g)

where W(t~f) - ýWlkt.hf) again. Observe the conjugates on

subscripts d and c of the scaled WDFs W.

For 0-1-k, o-il, u-p-1, this relation becomes

fdv'dT' exp(i2nv't-i2nf-'r) Xab(v+½V'.T+hT') Xcd(V-W'.r+•r) "

- 4 exp(i4nfr) W ad*( 2 t. 2 f+v) Wbc*( 2 t, 2 f-v) -

- exp(i4nf'r) Wad,(tgf+) Wbc*(tf-hv) • (A-10)
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APPENDIX B - PRODUCTS OF WDFs

In this appendix, we will also generalize the results in (81)

and (84), but now for products of two WDFs, to allow for more

general arguments. Again, we begin by considering general two-

dimensional functions as in figure 1. In particular, let

g(t) - W1 (tfa) , h(t) - W2 (t,fb) (B-i)

in (4). Then

G(v) - 01(v'fa) , H(v) - 0 2 (v,fb) , (B-2)

giving

dt' exp(-i2nvt') W (0t'+o+ttfa) W2 (Yt'+ut,fb) - exp i2nvtc'y 0") X
f I2B' a 2b b 20y3)

x Jdv' exp(i2nv't(y-0,u)) 01 (YV'+ v (B-3)

Now, let f a-f'+tf, fb-yf'+Pf, where the boldface constants

are unrelated to their counterparts; that is, 1 need not equal 0,

with the same true of a,p,y. Then Fourier transform (B-3) on f',

to obtain

ffdt'df' exp(-i2nvt'+i2nf'x) W 1(0t'+0Ct,1f'+Mf) W 2(Yt'+Pt,Tfl+pf)-

-exp i2vrvtczy~o) Jdvldf' exp(+12nv't~otY-0P)+ii2nf1T) x

x 11(yv'+ 13 ,f'+,f) 1*(1v'- v ,yf'+pf) (B-4)
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in general, we cannot proceed any further on this double integral

of a product of general two-dimensional functions W 1 and W 2 *

Now let R1and R2be TCFs; that is,

R 1 (t,x) - a(t+4¶) b*(t-hT) - Rab(tI¶)I

R 2(tT)- c(t+½hr) d*(t-4¶) - R cd(t,¶C) *(B-5)

Then 41and 42become SCFs:

* 1 (v,f) - 9 a (v,f) - A(f+½v) B*(f-Isv)

#2(Vf)- #cd (V~f) - C(f+kv) D*(f-½V) .(B-6)

Substitution in (B-4) yields

1 x~2nvt~xy~op Jdv'df' exp(+i2nv'tuxty-O#)+i2nf'¶) X

"x A ( If'+Uf+½Yv'+4v/O) B*(~f'+Mf-hYv'...'v/jS) x

" C* (Yf'+Pf+40V'-4v/Y) D(yf'+Puf-h0v'Pav/y) . (B-7)

As a first case, let y-O and y-0. Then (B-7) becomes
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'dtldf'exp(-i2nvtl+i2nfT) W(at I+at, f I+of ) W P'pf+f
Nab cdOt+tOfPf

-exp 12nvtot+Al) Jfdv'df' exp(+12nv'tO(ct-pflii2nf?-r x

X &(P~fe+f+v4JeVIk/O) B* (Of I+of -10V I-iv/P3) X

X c~ (Of'+#f+40V'-'tV/O) D(af'+saf-kPv'+Iav/0)-

1 0101-1 exp(+i2nvt A~i -12mfTa+) X

Thus, the very general two-dimensional correlation and Fourier

transform of cross WDFs can be expressed as a product of two

different cross CAFs. For O-0-1, oc-am4, p-ju--½, this result

reduces to (84).

As a second case, let y--O and y--p. Then (B-7) becomes

-exp i2nvtOP) fdv'df' exp(-i2nv'tO(cm+P)+i2nf'¶) x

x A( Of I+ f -kOV I+ v/0) B* (af'I+of +4 1V'I-kv/1) x

X C* (_ af'+#f+40V'+kv/O) D(-af'+juf-4½0v'-iv/0)-
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-19151- exp (+12nvtýj#K -12 n f ya) X

x Wect(OL,+U)+ •-' f(a+,u)+ V• ) Wdtap-y ,~+,) (B'-9)

using (61). Thus, the very general two-dimensional convolution

and Fourier transform of cross WDFs can be expressed as a product

of two different cross WDFs. For 0-w-, a-a-1, /--p-l, this

result reduces to (81).

For T - 0, v - 0, b(t) - a(t), d(t) - c(t), (B-9) reduces to

,jdtDdfI Waa (ct+Ot',af+0f') W c(pt-ot',,f-f' ) -

W 1001- I~!c(t(OC+P)i f(C+P) )1 2 , (B-10)

which is nonnegative for all parameter values and waveforms a(t)

and c(t). This is a generalization of (96).
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APPENDIX C - A GENERALIZED WDF

When a signal is reflected from a moving target, the effect

is to contract (or expand) the time scale of the echo, rather

than cause a frequency shift. This requires us to consider a

more general version of a WDF. To begin, if waveforms

a(t) a a(ct) , b(t) a b(tt) , O > 0 , (C-i)

then their cross WDF is

Wb(t,f) = Wab(Octf/c) . (C-2)

Thus, we have need to consider integrals of the form

Kw fdt'df' exp(-i2nvt'+i2nf'T) Wab(t',f') Wcd(t-at',f-f'/a).(C- 3 )

This form is general enough to accommodate integrand

W ab(It',f') Wcd (t-Ot',f-f'/ ) (C-4)

by a change of variable.

To accomplish evaluation of (C-3), we must define a

generalized WDF as

W ablt,f;p) M JdT exp(-i2nfT) alt+pT) b*(t-ll-p)T) . (C-5)

Then we have the usual WDF as a special case, namely

Wab(t,f;4) - Wab(tlf) . (C-6)
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Also, (C-5) enables us to evaluate the following more general

integral according to

fdt' exp(-i2nft') a(t') b *(t-atI) -

1
- p exp(-i2nftp) Wab(pt,pf;p) P- " (C-7)

Now we are in a position to reconsider integral K defined

above in (C-3):

K - Ifdt'df' exp(-i2nvt'+i2nf't,) du exp(-i2nf'u) a(t'+4u) x

x *(tl-u) dv exp[i2n(f-f'/a)v] c*(t-at'+hv) d(t-Jt'-hv). (C-8)

The integral on f' yields 6(T-u-v/a). Integration on u then

yields

K - fJJdt'dv exp(-i2nvt'+i2nfv) a(t'+4T-4v/c) x

x b (t'-ýx+4v/ct) c (t-attl+hv) d(t-at'-4v) .(C-9)

Now let

x - t'+4¶-hv/m , y = t'-4'+4v/M

t - (x+y) , v (y-x+¶) . (C-10)

The Jacobian of this two-dimensional transformation is a, leading

to
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-affdx dy expj-inv(x+y)+i2nfcx(y.-x+-r)J x

x a(x) b *(y) c*(t+haT-ax) d(t-½aT'-ay)-

a exp(i2ncif') dxexp[-i2n(otf+hv)xl a )c(t+½xtT-ax) x

x fdy exp(i2n(xtf-½v)yj b* (y) d(t-hot¶-txy)

(.-) .2 exp (i2n"-~ ac(t+½cz¶ + '1)O

(83), upon use of (C-6) and (61).
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